The impact of performance-based financing schemes in the health sector on child and maternal care in Mozambique

Julius Ohrnberger, Laura Anselmi, Eleonora Fichera, Josephine Borghi, Sergio Chicumbe

on behalf of the Performance-based financing mechanisms for health system strengthening in Africa PEMBA project Team

Maputo, 21 November 2019
Introduction

Sustainable Development goal (3): *Good Health and Well-being*

- Universal Health Coverage
- Child and Maternal Health

How can we improve access and delivery of child and maternal care?

- Performance-based-financing (PBF) proposed in many countries as a strategy to increase access and improve quality

- Payment of budget to health care providers based on the achievement of pre-defined targets for selected indicators

- Incentive payment is accompanied by increased supervision and monitoring
Evidence on Performance-based Financing

Globally, evidence is so far mixed

- Existing research has focused mostly on the delivery of targeted health care services (Basinga et al., 2011; Eijkenaar et al., 2013; Bonfrer et al., 2014; Rajkotia et al., 2017; Gergen et al., 2018)

- Little is known on heterogeneous effects and on health outcomes

In Mozambique Rajkotia et al., 2017 also found mixed evidence on targeted indicators

- Higher impact: Pregnant women HIV positive start ARV and complete PTV, Pregnant women attend 4 or more ANC visits

- Mixed impact: institutional delivery, full vaccination

- No impact: Malaria and other non-Incentivised indicators
PBF in Mozambique

- Implemented in health facilities in Gaza and Nampula
- 21 indicators in 5 groups incentivised
- Incentives: quantity-based bonus weighted by quality and HF remoteness
- Monthly reporting and quarterly reports using HF-registers
21 Targeted PBF Indicators

<table>
<thead>
<tr>
<th>Adult HIV Care and Treatment</th>
<th>Paediatric HIV</th>
<th>Maternal and Child Health</th>
<th>Preventing vertical HIV transmission</th>
<th>Other HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nb. HIV-infected adults (excluding pregnant women) initiating ART</td>
<td>• Nb. PCR tests for HIV for children (4-8weeks) of HIV-infected mothers</td>
<td>• Nb. pregnant women >=4 ANC-visits</td>
<td>• Nb. HIV-infected pregnant women receiving antiretroviral prophylaxis</td>
<td>• Nb. HIV-infected patients lost to follow up coming back for ART</td>
</tr>
<tr>
<td>• Nb. of adults co-infected with HIV and tuberculosis (TB) who initiated ART</td>
<td>• Nb. HIV rapid tests for children 9-12months of HIV-infected mothers</td>
<td>• Nb. pregnant women who delivered at the health facility</td>
<td>• Nb. HIV-infected pregnant women initiating ART</td>
<td>• Nb. Male partners tested for HIV</td>
</tr>
<tr>
<td>• Nb. HIV-infected patients who initiated Isoniazid to prevent TB</td>
<td>• Nb. HIV-infected children 0-23months initiating ART</td>
<td>• Nb. children who receive full vaccination for BCG, DPT, polio and measles in 9 months</td>
<td>• Nb. HIV-infected pregnant women receiving family planning and contraceptives</td>
<td>• Nb. HIV-tests at HF</td>
</tr>
<tr>
<td>• Nb. of HIV-infected adults alive 12 months after initiating ART</td>
<td>• Nb. HIV-infected children 2-14yearsmonths initiating ART</td>
<td>• Nb. women (excluding HIV-infected) receiving family planning and contraceptives</td>
<td>• Nb. HIV-infected children 0-23months initiating ART</td>
<td>• Nb. Children acute malnutrition, treated and discharged</td>
</tr>
</tbody>
</table>

Other HIV
• Nb. HIV-infected patients lost to follow up coming back for ART
• Nb. Male partners tested for HIV
• Nb. HIV-tests at HF
Demographic Health Survey (DHS)

Women report all pregnancy and related care 5 years prior interview

Construct pooled cross-sectional conceptions 2006-2015
GPS info and health facility data

Need to identify if:

a.) closest health facility is PBF-exposed

b.) district is PBF-district

Link mothers to districts and closest HF and identify if HF is PBF-exposed:

- **WHO-SARA**: info about health facilities geo-coordinates;
- **EGPAF**: info about HF-PBF status

DHS: GPS-location of HH in clusters (5km positional error)
Nampula

- Health facility
- DHS cluster 2015
- DHS Cluster 2011
- Health facility – PBF Phase 1
- Health facility – PBF Phase 2
- Health facility – PBF Phase 3
- Health facility – PBF Phase 4
Outcome variables

ANTENATAL CARE (ANC):
- At least 4 ANC visits
- HIV test offered at ANC visit
- Tested for HIV at ANC visit
- Knowledge: Vertical HIV transmission
- Knowledge: Drugs to avoid vertical HIV transmission

DELIVERY AND POSTNATAL CARE:
- Institutional delivery
- Vaccination within 1 year
- Vaccination within 9 months

CHILD MORTALITY:
- Neonatal mortality
- Infant mortality
Sample(s)

I: Analysis of ANC, delivery and postnatal care effects

- N=5,031; Gaza: 561 (HF:83; D:226), Nampula: 451 (HF:63; D:186), ROC: 4,055

II+III: Analysis of child mortality effects

- Neonatal mortality: N=8,889; Gaza: 824, Nampula: 789, ROC: 7,276
- Infant mortality: N=5,996; Gaza: 541, Nampula: 532, ROC: 4,923
Average Treatment Effect (ATE)

\[Y_i = \beta_0 + \beta_1 DID_i + \beta_2 PBF_i + \beta_3 After_i + \beta_4 Dist_i + \beta_5 SQ(Dist_i) + X_i \beta_6 + \beta_7 BYr_i + \beta_8 DHS_i + \beta_9 Supply + \epsilon_i \]

- \(\beta_1 \) is the ATE
- \(PBF_i \) PBF area
- \(After_i \) conception after PBF started

- \(X_i \) set of control variables
- \(Dist_i \) is distance to closest HF
- \(SQ(Dist_i) \) non-linear distance

Fixed effects:
- Supply side
- Birth Year
- DHS Cohort

Clustered SE
Heterogeneity of Effect

\[Y_i = \beta_0 + \beta_4 D\text{ID}_i \times \text{VAR}_i + \beta_5 \text{PBF}_i \times \text{VAR}_i + \beta_6 \text{After}_i \times \text{VAR}_i + \beta_7 \text{VAR}_i + \cdots + \epsilon_i \]

\(\text{VAR}_i \) is here a placeholder for three binary variables, either:

- individual lives in a **household below median**
- individual has **no education**
- individual lives in **Gaza province**

\(\beta_4 \) is PBF-effect difference when using respective binary indicator comparison.
Results: Average Treatment Effect

PBF effects **HF-level** (95% CI)

PBF effects **district-level** (95% CI)
Results: Below median wealth vs Above

PBF effects **HF-level** (95% CI)

- 4 ANC Visits
- HIV Test offered
- HIV Know. 1 (P)
- HIV Know. 2 (P)
- Inst. Delivery (P)
- Vacc. 12months (P)
- Vacc. 9months (P)
- Neon. Mort. (P)
- Infant Mort.

PBF effects **district-level** (95% CI)

- 4 ANC Visits
- HIV Test offered
- HIV Know. 1
- HIV Know. 2
- Inst. Delivery (P)
- Vacc. 12months
- Vacc. 9months
- Neon. Mort.
- Infant Mort.
Results: No education versus all other

PBF effects **HF-level** (95% CI)

PBF effects **district-level** (95% CI)
Results: Gaza versus Nampula

PBF effects **HF-level** (95% CI)

PBF effects **district-level** (95% CI)
Results: Sensitivity analysis

1. *Maputo city effects* → *no difference in effects*

2. Spill-over effects in treated provinces → *no difference in effects*

3. District selection into PBF → *no difference in effects*

4. Treatment definition → *no difference in effects*

5. Border cluster effects → *no difference in effects*

6. Asses area effects → *no difference in effects*
Limitations

- Assumption of limited mobility of mothers → exiting studies suggest low internal migration among females
- Can only assess limited set of indicators → data permits ind. level analysis and to test identification assumptions
- Limit child mortality data; ideally assess 5-year mortality
- Covariates observed at time of interview → low variation in DHS wealth index and education
- Small sample size of treated mothers may in particular drive findings for health facility level analysis
Discussion

• **Effects on district level** → larger health care provider level → referral system in place…?

• **Strong positive effects on HIV-testing** offered (14pp), HIV-tested (21.5pp), knowledge *vertical transmission* (7pp), knowledge **drugs avoid transmission** (24pp) → in line with previous research (Rajkotia et al., 2017)

• **Heterogenous by education** → PBF with potential to overcome socio-economic inequalities in health care access

• **Stronger effects in Nampula vs Gaza** for HIV-related outcomes → in line with previous research (Rajkotia et al., 2017)

• **Stronger effects in Gaza vs Nampula** for Vaccination → different to previous research (Rajkotia et al., 2017)
Conclusion

• Positive effects on maternal HIV knowledge and HIV testing on district level
• No effects on child and maternal care nor on neo-natal and infant mortality
• PBF-effects strongly varies by local heterogeneities in health care need
• PBF can overcome inequality in health care access (education) for outreach services

Future Research

• Understand PBF-effect on child health and child/maternal mortality
• Understand underlying pathways to effect, e.g. supply or demand driven?
Acknowledgements

To all other members of the PEMBA Team:
Pedroso Nhachengo (INS Misau Mozambique), Garret Brown (University of Leeds), Matt Sutton (University of Manchester), Soeren Rud Kristensen (Imperial College London), Roxanne Kovacs (LSHTM), Artwell Kadungure and Rene Loewensen (TARSC Zimbabwe), Gwati Gwati and Susan Mutambu (Ministry of Health and Child Care Zimbabwe).

To Elizabeth Glaser Paediatric AIDS Foundation

To the UK Research Initiative through the Health System Strengthening Initiative which is jointly funded by the MRC, DFID, Wellcome Trust and ESRC.
Thank you for your attention!
<table>
<thead>
<tr>
<th>Province</th>
<th>Phase1</th>
<th>Phase2</th>
<th>Phase3</th>
<th>Phase4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaza</td>
<td>D: 8/14 HF: 9</td>
<td>D: 13/14 HF: 29</td>
<td>D: 14/14 HF: 54</td>
<td>D: 14/14 HF: 75</td>
</tr>
</tbody>
</table>
Difference-in-Difference Estimation

Ref: Thanks to the internet