Remote Sensing of Resistance and Recovery in Beira following Cyclone Idai

IGM annual conference 2020

Peter Fisker UCHP, DERG

Co-authors: David Malmgren-Hansen and Thomas Sohnesen

UNIVERSITY OF COPENHAGEN

Introduction

- Cyclone Idai made landfall near Beira on night between March 14 and 15, 2019. In the Southern Hemisphere Idai ranks as the second-deadliest tropical cyclone on record with high wind speeds and subsequent largescale floods.
- While the frequency of tropical cyclones in Eastern Africa is expected to increase as a consequence of climate change, it becomes more an more urgent to study local resilience to weather-related disasters.
- Hopefully, more knowledge about factors influencing resistance and recovery can help both first-responders and longer-term social policy makers improve targeting of assistance.

Research questions

• What are the pros and cons of using remote sensing data to measure both the impact of a cyclone and the process of reconstruction?

- Which factors affect the impact of and recovery from a large tropical cyclone?
- Can this knowledge be used to improve targeting of disaster relief?

Resilience concepts: resistance and recovery

- Resilience can be defined as:
- "the ability of a system and its component parts to anticipate, absorb, accommodate or recover from the effects of a hazardous event in a timely and efficient manner"
 - Resistance: how deep is the dip?
 - Recovery: how much and how fast?

TIME

Image source: https://www.shoalgroup.com/uncategorised/understanding-resilience-in-systems/

Data sources

- Three sources:
 - 1. Radar change detections of cyclone impact
 - 2. New images, training, model: house detections and classifications
 - 3. Cell-level spatial data including construction density, initial wealth, and distances
- Unit of analysis: cells of 115m * 115m (~6,000 obs)
- Time dimensions:
 - 14-20 or 14-26 March 2019 (resistance)
 - June 2019 Jan 2020 (reconstruction)

Data – Radar change detections

(b) 14 March–20 March

(c) 20 March–26 March

Data – new images, detections, classifications

Data – Poverty, infrastructure, distances

Outcome variables:

- Resistance (before-after cyclone):
 - Radar change detections (increased reflectivity) 14-20 and 14-26 March 2019
 - Alternative: Manually damage tags 13-26 March 2019

- Reconstruction (3-10 months after cyclone):
 - Change in share of painted roofs June 2019 Jan 2020
 - Change in share of houses under construction June 2019 Jan 2020

Explanatory variables

- Cyclone exposure:
 - Distance to coast
 - Radar changes March 14-20
- Initial wealth:
 - Estimated PMT score (2018)
- Access to services:
 - Distance to city centre
 - Distance to primary road (from OSM)
 - PASP coverage (from WB/INAS)
- Neighborhood fixed effects

Hypotheses

- Resistance:
 - Indicators: Radar change detections before-after cyclone, manual damage tags
 - Degree of destruction depends on initial wealth (better houses more resistant),
 construction density and exposure to hazard
- Recovery:
 - Indicators: a positive change in share of painted roofs, buildings under construction
 - Process of recovery depends on scale of destruction, initial wealth, and access to services (schools, roads, social protection, manufacturers)

Estimation models

For all units of analysis, i.e. cells falling within the city limits, resistance to the immediate cyclone impact can be assessed by estimating the following:

$$Impact = \beta_1 PMT + \beta_2 density + \beta_3 dist.coast + \epsilon \tag{1}$$

In a similar fashion, the process of reconstruction can be analysed in a regression set-up:

$$Recon = \beta_1 PMT + \beta_2 Impact + \beta_3 density + \beta_4 dist + \beta_5 SP + \gamma + \epsilon \tag{2}$$

Results

Table 1: Resistance

	(1)	(2)	(3)	(4)	(5)	(6)
Initial wealth	0.01	0.02	-0.05***	-0.08***	-0.11***	-0.08***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Density	0.15***	0.15***	-0.12***	-0.13***	0.03***	0.04***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)
Dist. coast		0.01*		-0.01***		0.02***
		(0.00)		(0.00)		(0.00)
Constant	0.61***	0.53***	0.66***	0.88***	0.53***	0.29***
	(0.04)	(0.06)	(0.03)	(0.06)	(0.02)	(0.03)
N	5650	5650	5650	5650	5003	5003
r2	0.02	0.02	0.02	0.03	0.06	0.08

Standard errors in parentheses

Column 1-2: share of building pixels with increase in reflectivity March 14-20. Column 3-4: share of building pixels with increase in reflectivity March 14-26. Column 5-6: Number of manual tags divided by number of building pixels 14-20

^{*} p<0.10, ** p<0.05, *** p<0.01

Results

Table 2: Reconstruction

	(1)	(2)	(2)	(1)	(5)	(6)
	(1)	(2)	(3)	(4)	(5)	(6)
Initial wealth	0.10***	0.06***	0.05***	0.10***	0.11***	0.12***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Cyclone impact	-0.01	-0.01	-0.01	0.02*	0.01	-0.01
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Dist. city centre		-0.65***	-1.87***		0.25***	0.78**
		(0.06)	(0.24)		(0.08)	(0.31)
Dist. prim. road		-0.61***	-0.74***		1.72***	0.29
		(0.12)	(0.27)		(0.15)	(0.36)
SP coverage		0.00	0.00		-0.03***	-0.02***
		(0.00)	(0.00)		(0.01)	(0.01)
Constant	-0.32***	-0.12***	-0.08**	-0.32***	-0.40***	-0.41***
	(0.02)	(0.03)	(0.04)	(0.03)	(0.04)	(0.05)
N	5473	5473	5473	5473	5473	5473
r2	0.06	0.08	0.11	0.03	0.06	0.10

Standard errors in parentheses

Column 1-3: change in share of painted roofs, column 4-6: change in share of buildings under construction. Column 3 and 6 include neighborhood fixed effects

^{*} p<0.10, ** p<0.05, *** p<0.01

Preliminary conclusions

- Remote sensing data is useful for measuring both cyclone impacts and process of reconstruction – with caution! If data extracted from satellite images and radar change detections is valid, the following messages emerge:
- Richer, and denser neighbourhoods faced a lower immediate cyclone impact (measured as share of built-up area damaged after first clean-up)
- Reconstruction process is largely unaffected by initial degree of damages, but more pronounced in richer areas for both the change in the share of high-quality roofs and buildings under construction.
- The former more so closer to the city centre and primary roads while the relation is opposite for the change in buildings under construction.
- Correlations robust to neighbourhood fixed effects.

Caveats

- Is it really cyclone damages that we are measuring?
 - Changes in the share of building pixels that show increased reflectivity filtered by building footprints
 - Malmgren-Hansen et al. (2020) discusses this in detail
- Is it really reconstruction that we are measuring?
 - Change in share of house detections that have a painted roof and change in share of house detections that seem to be buildings under construction, June 2019- Jan 2020
 - Can we trust the CNN estimates? See discussion in Fisker et al. (2020) (Ring Road paper)
 - Is it **re-**construction or just urban development?
- Is it really initial wealth that we are measuring?
 - See Sohnesen et al. (2020) for a better introduction to this