Gendered effects of digital jobs matching platforms: experimental evidence from Mozambique

Sam Jones, UNU-WIDER (Mozambique) Kunal Sen, UNU-WIDER (Helsinki)

45th Meeting of the Brazilian Econometric Society 15 December 2023

3 Data & Methods

4 Results

(1) Motivation

Motivation

Youth employment crisis in sub-Saharan Africa – at least one in five adults looking for (more) work.

But un(der)employment often coincides with unfilled vacancies.

Interest in how to reduce 'matching frictions':

- Vacancy information (Dammert et al., 2015)
- Transport subsidies (Franklin, 2018)
- Supported job search (Altmann et al., 2018; Belot et al., 2019)
- Wage information (Jones & Santos, 2022)
- Subsidized skills screening for firms (Abebe et al., 2021)
- Attracting and screening candidates on job portals (Fernando et al., 2023)

Our focus: getting individuals to use digital jobs matching platforms.

Existing literature

Mixed findings in US/Europe – 'puzzle of ineffective internet job search' (Kroft and Pope, 2014; Horton, 2017).

Recent evidence from India also not so encouraging:

- Chakravorty et al. (2021): nudged TVET graduates to use a government-run application → moderate uptake, but no positive effects on labour market outcomes
- Afridi et al. (2022): household visits offering free registration on a 'hyper-local' platform to find blue-collar workers → no significant overall treatment effect
- Kelley et al. (2023): registered randomly-chosen graduates on a jobs portal, which sent them SMS's on opportunities → temporary *increase* in voluntary unemployment

Our contributions

- **1** Consider a new context: low-income SSA where jobs dynamics somewhat different (v. challenging)
- Compare platforms at opposite ends of the jobs spectrum: formal salaried jobs vs. informal tasks for the self-employed
- Examine gender heterogeneity: interaction with gender barriers men often first to move from self-employment into wage work (Bandiera et al., 2022); husbands benefit from wives' network treatment (Afridi et al., 2022)
- 4 Apply an alternative approach to dealing with non-compliance: principal scores

(2) Experiment

School-to-work youth tracer survey, Mozambique

We ran a longitudinal survey of TVET graduates (*Ensino Técnico Médio*) as they entered the labour market:

- All regions and types of schools (public/private) Maputo City, Maputo Province, Tete, Nampula and Cabo Delgado
- Wide range of different courses, agriculture/industry/services
- Baseline face-to-face survey (N = 1639): October-Nov. 2019
- Follow-up telephone survey (4 waves): January-Nov. 2020
- Track multiple outcomes : e.g., employment status, job quality, earnings, search behaviour, life satisfaction
- ⇒ Focus primarily on combined employment outcome score (1st principal component of 9 sub-variables)

(More information: final survey report.)

A randomized nudge, sent by SMS

A simple encouragement (nudge) intervention.

Sent (tailored) SMS messages inviting participants to register on one of two local digital labour platforms:

- **1** *Emprego*: employers post formal (professional) jobs
- 2 Biscate: clients contact workers for informal tasks
- ... plus a control group (no SMS)

SMS invite example:

Mensagem para finalistas do curso Geologia: regista-te no Biscate para receberes oport--unidades de trabalho. Liga gratuito para *770#

(3) Data & Methods

Sample structure

Low attrition across arms

12/28

Weak employment outcomes overall

Empirical strategy

Schematic:

Hypothesis 1 – nudges stimulate platform usage:

$$\mathsf{Usage}_{it} = \alpha_j + \sum_{p} \beta_p \mathsf{Nudge}_{it}^{p} + X'_{it}\theta + \lambda_t + \varepsilon_{it}$$
(1)

Hypothesis 2 – platforms improve outcomes (intent-to-treat):

$$y_{it} = \alpha + \sum_{p} \delta_{p} \mathsf{Nudge}_{it}^{p} + X'_{it}\gamma + \mu_{i} + \lambda_{t} + \phi_{it}$$
(2)

ITT estimates are often conservative

ITT estimates capture the causal effect of the nudge, not the efficacy of the platforms *per se*

Impact of platforms on marginal users \Rightarrow '**complier-average treatment effect**' (CATE)

How to estimate CATE?

Use randomized nudge as IV for platform uptake ... the standard approach, but can be inefficient and biased

Alternative is to focus on compliance propensity

Beyond ITT estimates \rightarrow principal scores

By randomization, we assume exchangeability:

```
Pr(always-taker | treatment = 0) = Pr(always-taker | treatment = 1)
```

Pr(never-taker | treatment = 1) = Pr(never-taker | treatment = 0)

Split sample approach: use control group to estimate 'always-taker' propensities & treated group(s) to estimate 'never-taker' propensities (c.f., Jo, 2009; Ding & Lu, 2017)

Apply estimates to potential compliers in opposite groups:

Pr(complier | treatment = 1) =
$$\begin{cases} 1 - \hat{\pi}_a & \text{if uptake} = 1\\ 1 - \pi_n = 0 & \text{if uptake} = 0 \end{cases}$$
Pr(complier | treatment = 0) =
$$\begin{cases} 1 - \hat{\pi}_n & \text{if uptake} = 0\\ 1 - \pi_a = 0 & \text{if uptake} = 1 \end{cases}$$

Use estimated complier probabilities to weigh ITT regression.

(4) Results

(1) Positive effect of the SMS nudge on usage

	Emprego	Biscate	Either
Emprego SMS	0.08***	0.06***	
	(0.01)	(0.01)	
Biscate SMS	-0.00	0.26***	
	(0.01)	(0.01)	
Any SMS			0.14***
			(0.01)
Female	-0.06***	-0.02**	-0.06***
	(0.01)	(0.01)	(0.01)
Manual course	-0.02*	0.01	0.00
	(0.01)	(0.01)	(0.01)
Speaks English	0.03***	0.01	0.03***
	(0.01)	(0.01)	(0.01)
Willing to work for self	0.01	0.00	0.03
	(0.06)	(0.05)	(0.06)
Willing to work for others	0.04	-0.01	0.03
	(0.05)	(0.05)	(0.06)
Obs	5,321	5,321	5,321
R ² adj.	0.16	0.33	0.23

(2) But imperfect \implies 'two-way non-compliance'

Emprego uptake

(2) But imperfect \implies 'two-way non-compliance'

Biscate uptake

(3) Treatment effects generally close to zero

	(a) Combined treatments			(b) Separate treatments		
Estimator \rightarrow	ITT	IV	PI	ITT	IV	PI
Any platform	0.02 (0.05)	0.17 (0.36)	0.08 (0.06)			
Emprego				0.01 (0.06)	0.01 (0.78)	0.05 (0.09)
Biscate				0.04 (0.06)	0.15 (0.24)	0.12* (0.07)
Diff. (prob.)				-0.03 (0.66)	-0.14 (0.86)	-0.07 (0.45)
N RMSE	5,325 0.76	5,325 0.65	4,049 0.74	5,325 0.76	5,325 0.65	3,821 0.75
Period fixed-effects Time-varying controls Individual fixed-effects	Y Y Y	Y Y Y	Y Y Y	Y Y Y	Y Y Y	Y Y Y

significance: * 10%, ** 5%, *** 1%

(3) Treatment effects generally close to zero

(4) Hint of a more positive effect of Biscate

Effect of specific treatments on multi-outcome score

(5) Similar null effects across underlying outcomes

(6a) Important differences by gender ...

	(I) Outcome score		(II) Res. wage (log.)		(III) Seeking work	
$\text{Estimator} \rightarrow$	ITT	PI	ITT	PI	ITT	PI
Any	0.06	0.15**	0.01	-0.00	0.04	0.09***
	(0.06)	(0.07)	(0.03)	(0.04)	(0.03)	(0.03)
Any $ imes$ Female	-0.08	-0.20**	0.07**	0.07	-0.06**	-0.07*
-	(0.07)	(0.09)	(0.03)	(0.04)	(0.03)	(0.04)
Any if female	-0.02	-0.04	0.08	0.07	-0.02	0.02
(prob.)	(0.73)	(0.59)	(0.01)	(0.08)	(0.44)	(0.63)
Obs	5,325	4,049	5,325	4,049	5,325	4,049
RMSE	0.76	0.74	0.35	0.35	0.38	0.37

significance: * 10%, ** 5%, *** 1% Source: own estimates.

(6b) ... which interact with type of course

CATE-PI effects of specific treatments on multi-outcome score

(5) Conclusion

Conclusion

- Contributed new evidence on role of digital platforms, comparing platforms for formal jobs vs. informal tasks
- **2** ITT estimates are conservative \rightarrow CATE-PI estimates useful
- 3 For the average TVET graduate, no evidence nudges to use digital platforms yield significantly better jobs outcomes ⇒ slow jobs growth a key constraint
- 4 Complex gendered effects of *both* platforms:
 - Overall, men seem to benefit (marginally) more
 - Positive jobs benefits of *Biscate* for women with manual qualifications task-based digital platforms may help serve specific market niches with high search frictions
 - BUT negative effects of *Emprego* for same group also suggests platforms can reproduce gender barriers