#### Labour market effects of digital matching platforms: experimental evidence from sub-Saharan Africa

Sam Jones & Kunal Sen UNU-WIDER

December 2022, Cape Town

### Agenda



#### 2 Design

3 Data & Methods

#### 4 Results

#### 5 Extensions

#### 6 Conclusion

# (1) Motivation

# **Motivation**

Youth employment crisis in sub-Saharan Africa: at least one in five adults looking for (more) work.

But un(der)employment often coincides with unfilled vacancies.

Interest in policies to address 'matching frictions':

- Vacancy information (Dammert et al., 2015)
- Transport subsidies (Franklin, 2018)
- Subsidized skills screening (Abebe et al., 2021)
- Supported job search (Altmann et al., 2018; Belot et al., 2019)
- Wage information (Jones & Santos, 2022)

# **Existing literature**

Limited evidence on contribution of digital jobs platforms to reducing market frictions, esp. in low income contexts.

Mixed findings in US/Europe – e.g., 'puzzle of ineffective internet job search' (Kroft and Pope, 2014; Horton, 2017).

Two recent studies in India:

- Kelley et al. (2022): register randomly-chosen graduates on a jobs portal and send them SMS's on opportunities → temporary increase in voluntary unemployment.
- Chakravorty et al. (2021): nudge TVET graduates to use a government-run application → moderate uptake but no positive effects on labour market outcomes.

We add new evidence from SSA & compare two different types of platforms: conventional portal to find formal jobs vs. a portal to find informal workers.



### Leverage a youth tracer survey

We ran a longitudinal survey of TVET graduates (*Ensino Técnico Médio*) as they entered the labour market:

- All regions and types of schools (public/private) Maputo City, Maputo Province, Tete, Nampula and Cabo Delgado
- Wide range of different courses, agriculture/industry/services
- Baseline face-to-face survey (N = 1639): October-Nov. 2019
- Follow-up telephone survey (4 waves): January-Nov. 2020
- Track multiple outcomes : e.g., employment status, job quality, life satisfaction, earnings → synthetic overall score

More information: final survey report.

# **Embed an experiment**

Added a simple encouragement (nudge) intervention.

Sent SMS messages inviting *randomly-selected* participants to register on one of two local digital labour platforms:

- Emprego: employers post formal (professional) jobs
- Biscate: manual workers contacted by clients

#### SMS invitation example:

Mensagem para finalistas do curso Geologia: regista-te no Biscate para receberes oport--unidades de trabalho. Liga gratuito para \*770#

# Main question: does usage of digital platforms lead to better employment outcomes?

# (3) Data & Methods

### Sample structure



### Sample structure



# **Analysis**

#### Schematic:



Uptake regressions:

$$\mathsf{Usage}_{it}^{p} = \alpha_{j} + \sum_{p} \beta_{p} \mathsf{Nudge}_{it}^{p} + X'_{it} \theta^{p} + \varepsilon_{it}^{p}$$
(1)

Outcome regression (intent-to-treat effect):

$$y_{it} = \alpha + \sum_{p} \delta_{p} \text{Nudge}_{it}^{p} + X'_{it}\gamma + \phi_{it}$$
 (2)

Complier average treatment effect (CATE):  $\delta_p/\beta_p$ 

# (4) Results

# (1) Positive effect of the SMS nudge on usage

|                     | (1) Emprego usage |          |          |          | (2) Biscate usage |          |         |          |
|---------------------|-------------------|----------|----------|----------|-------------------|----------|---------|----------|
|                     | Ext.              | Self     | Srch     | Mean     | Ext.              | Self     | Srch    | Mean     |
| Emprego SMS         | 0.09***           | 0.10***  | 0.03**   | 0.08***  | 0.01              | 0.12***  | 0.02*** | 0.06***  |
|                     | (0.02)            | (0.02)   | (0.01)   | (0.02)   | (0.01)            | (0.02)   | (0.01)  | (0.01)   |
| Biscate SMS         | -0.01             | 0.01     | -0.01    | -0.00    | 0.47***           | 0.27***  | 0.02*** | 0.26***  |
|                     | (0.01)            | (0.02)   | (0.01)   | (0.01)   | (0.03)            | (0.02)   | (0.01)  | (0.01)   |
| Manual course       | -0.00             | -0.00    | -0.01    | -0.00    | 0.04***           | 0.01     | 0.00    | 0.02**   |
|                     | (0.01)            | (0.02)   | (0.01)   | (0.01)   | (0.01)            | (0.02)   | (0.00)  | (0.01)   |
| Female              | -0.03***          | -0.08*** | -0.05*** | -0.06*** | -0.02*            | -0.04*** | -0.00   | -0.02*** |
|                     | (0.01)            | (0.02)   | (0.01)   | (0.01)   | (0.01)            | (0.01)   | (0.00)  | (0.01)   |
| Prev. experience    | 0.00              | 0.02     | 0.01     | 0.01     | 0.02*             | 0.04***  | 0.00    | 0.02***  |
|                     | (0.01)            | (0.01)   | (0.01)   | (0.01)   | (0.01)            | (0.01)   | (0.00)  | (0.01)   |
| Obs                 | 5,327             | 5,327    | 5,327    | 5,327    | 5,327             | 5,327    | 5,327   | 5,327    |
| R <sup>2</sup> adj. | 0.06              | 0.13     | 0.02     | 0.13     | 0.39              | 0.17     | 0.02    | 0.32     |

significance: \* 10%, \*\* 5%, \*\*\* 1%

# (2) But imperfect $\implies$ 'two-way non-compliance'



# (3) ITT effects generally not different from zero



# (4a) Hint of differences by gender (ITT results) ...



# (5) Extensions

# **Beyond ITT estimates**

ITT estimates capture the causal effect of the nudge, not the efficacy of the platforms *per se* 

We are *also* interested in the impact of the platform on the marginal user – 'complier-average treatment effect'

Standard approach is to use our randomized nudge as an IV for platform uptake, but this can be inefficient (large SEs)

Alternative is to focus on non-compliance propensities:



# Beyond ITT estimates $\rightarrow$ principal scores

By randomization, we assume exchangability:

Pr(always-taker | treatment = 0) = Pr(always-taker | treatment = 1) Pr(never-taker | treatment = 1) = Pr(never-taker | treatment = 0)

Split sample approach: use control group to estimate 'always-taker' propensities &1 treated group(s) to estimate 'never-taker' propensities (c.f., Jo, 2009; Ding & Lu, 2017)

THEN apply these to **potential compliers** in opposite groups:

$$Pr(complier \mid treatment = 1) = \begin{cases} 1 - \hat{\pi}_a & \text{if uptake} = 1 \\ 1 - \pi_n = 0 & \text{if uptake} = 0 \end{cases}$$

$$Pr(complier \mid treatment = 0) = \begin{cases} 1 - \hat{\pi}_n & \text{if uptake} = 0\\ 1 - \pi_a = 0 & \text{if uptake} = 1 \end{cases}$$

# Comparison of estimators: Job quality score



### Comparison of estimators: Seeking work

![](_page_21_Figure_1.jpeg)

# Weighted ITT results : larger gender differences

![](_page_22_Figure_1.jpeg)

# Validating demand on the Biscate platform

|                                   | (I) Con | tact rate | (II) Agree | ement rate | (III) Demand index |          |
|-----------------------------------|---------|-----------|------------|------------|--------------------|----------|
|                                   | (a)     | (c)       | (a)        | (c)        | (a)                | (c)      |
| Female                            | -0.87   | -2.86***  | -0.41      | -1.22***   | 2.45*              | 0.44     |
|                                   | (0.86)  | (0.75)    | (0.38)     | (0.36)     | (1.34)             | (1.28)   |
| $\text{Female} \times \text{Age}$ |         | 0.98      |            | -0.24      |                    | 5.72**   |
|                                   |         | (1.20)    |            | (0.53)     |                    | (2.36)   |
| Female $\times$ Edu.              |         | -5.02***  |            | -0.92      |                    | -9.06*** |
|                                   |         | (1.72)    |            | (0.78)     |                    | (3.06)   |
| Female $\times$ Manual            |         | 12.55***  |            | 4.95***    |                    | 15.41*** |
|                                   |         | (3.04)    |            | (1.19)     |                    | (4.66)   |
| Age                               | -0.03   | -0.23     | -0.12      | -0.07      | 1.16***            | -0.21    |
|                                   | (0.16)  | (0.24)    | (0.08)     | (0.11)     | (0.35)             | (0.47)   |
| Education                         | -0.78** | 0.37      | -0.23      | 0.02       | -0.03              | 1.34     |
|                                   | (0.35)  | (0.40)    | (0.15)     | (0.19)     | (0.58)             | (0.83)   |
| Experience                        | -0.70** | 0.01      | -0.17      | 0.05       | -0.29              | 1.14     |
|                                   | (0.33)  | (0.31)    | (0.16)     | (0.16)     | (0.70)             | (0.80)   |
| Constant                          | 7.09*** | 6.09***   | 2.74***    | 2.42***    | 9.14***            | 8.62***  |
|                                   | (0.55)  | (0.50)    | (0.25)     | (0.22)     | (0.93)             | (0.87)   |
| Obs.                              | 20,850  | 20,850    | 20,850     | 20,850     | 20,850             | 20,850   |
| R <sup>2</sup>                    | 0.41    | 0.52      | 0.35       | 0.44       | 0.24               | 0.32     |

significance: \* 10%, \*\* 5%, \*\*\* 1%

# (6) Conclusion

# Conclusion

- Contribute experimental evidence on role of digital platforms to support youth employment, covering platforms for formal and informal jobs
- 2 For the average TVET graduate, no evidence nudges to use digital platforms yield significantly better jobs outcomes, BUT some evidence of higher search and lower satisfaction
- But ITT estimates are conservative → prefer complier-adjusted/ -weighted estimates of platform efficacy
- 4 These show small positive effects of *Emprego* but important gendered effects of both platforms:
  - Jobs benefits of *Emprego* accrue to men ⇒ clearly reflects structural labour market advantage of men
  - Jobs benefits of *Biscate* accrue to women, esp. those with manual qualifications task-based digital platforms may help serve specific market niches