Labour market effects of digital matching platforms: experimental evidence from sub-Saharan Africa

Sam Jones & Kunal Sen UNU-WIDER

08 November 2022

Agenda

- 1 Motivation
- 2 Experimental design
- 3 Data & Methods
- 4 Results
- 5 Validation
- 6 Conclusion

(1) Motivation

Motivation

Youth employment crisis in sub-Saharan Africa: at least one in five adults looking for work.

But un(der)employment often coincides with unfilled vacancies.

Growing interest in role of 'matching frictions':

- Vacancy information (Dammert et al., 2015)
- Transport subsidies (Franklin, 2018)
- Subsidized skills screening (Abebe et al., 2021)
- Wage information (Jones & Santos, 2022)

Limited *rigorous* evidence on role of digital jobs platforms, esp. for informal or occasional work \implies we run an experiment

(2) Experimental design

Experimental design

Embedded in a longitudinal survey of TVET graduates (*Ensino Técnico Médio*) as they entered the labour market:

- All regions and types of schools (public/private) Maputo City, Maputo Province, Tete, Nampula and Cabo Delgado
- Wide range of different courses, agriculture/industry/services
- Baseline face-to-face survey (N = 1639): October-Nov. 2019
- Follow-up telephone survey (4 waves): January-Nov. 2020

More information: final survey report.

Experimental design

Rely on a simple encouragement (nudge) intervention.

Sent SMS messages inviting *randomly-selected* participants to register on one of two local digital labour platforms:

- Biscate: for occassional, mainly manual work
- Emprego: for more professional work

SMS invitation example:

Mensagem para finalistas do curso Geologia: regista-te no Biscate para receberes oport--unidades de trabalho. Liga gratuito para *770#

Main question: does usage of digital platforms lead to better employment outcomes?

(3) Data & Methods

Sample structure

Sample structure

Analysis

Schematic:

Uptake regressions:

Usage^p_{it} =
$$\alpha_j + \sum_{p} \beta_p \text{Nudge}^p_{it} + X'_{it}\theta^p + \varepsilon^p_{it}$$
 (1)

Outcome regression (intent-to-treat effect):

$$y_{it} = \alpha + \sum_{p} \delta_{p} \text{Nudge}_{it}^{p} + X'_{it} \gamma + \phi_{it}$$
 (2)

Complier average treatment effect (CATE): δ_{p}/β_{p}

(4) Results

Results: did the nudge work?

	(1) Emprego usage				(2) Biscate usage			
	Ext.	Self	Srch	Mean	Ext.	Self	Srch	Mean
Emprego SMS	0.09***	0.10***	0.03**	0.07***	0.01	0.12***	0.02***	0.05***
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)
Biscate SMS	-0.01	0.01	-0.01	-0.00	0.47***	0.27***	0.02***	0.25***
	(0.01)	(0.02)	(0.01)	(0.01)	(0.03)	(0.02)	(0.01)	(0.01)
Manual course	-0.00	-0.00	-0.01	-0.01	0.04***	0.01	0.00	0.02**
	(0.01)	(0.02)	(0.01)	(0.01)	(0.01)	(0.02)	(0.00)	(0.01)
Female	-0.03***	-0.08***	-0.05***	-0.05***	-0.02*	-0.04***	-0.00	-0.02***
	(0.01)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.01)
Prev. experience	0.00	0.02	0.01	0.01	0.02*	0.04***	0.00	0.02***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.01)
Obs	5,327	5,327	5,327	5,327	5,327	5,327	5,327	5,327
R ² adj.	0.06	0.13	0.02	0.11	0.39	0.17	0.02	0.33

significance: * 10%, ** 5%, *** 1%

Results: pooled (ITT)

Results: gender differences (ITT)

Results: gender differences, manual courses (ITT)

(5) Validation

Demand on the Biscate platform

	(I) Con	tact rate	(II) Agree	ement rate	(III) Demand index		
	(a)	(c)	(a)	(c)	(a)	(c)	
Female	-0.87	-2.86***	-0.41	-1.22***	2.45*	0.44	
	(0.86)	(0.75)	(0.38)	(0.36)	(1.34)	(1.28)	
Female \times Age		0.98		-0.24		5.72**	
		(1.20)		(0.53)		(2.36)	
Female \times Edu.		-5.02***		-0.92		-9.06***	
		(1.72)		(0.78)		(3.06)	
Female \times Manual		12.55***		4.95***		15.41***	
		(3.04)		(1.19)		(4.66)	
Age	-0.03	-0.23	-0.12	-0.07	1.16***	-0.21	
	(0.16)	(0.24)	(80.0)	(0.11)	(0.35)	(0.47)	
Education	-0.78**	0.37	-0.23	0.02	-0.03	1.34	
	(0.35)	(0.40)	(0.15)	(0.19)	(0.58)	(0.83)	
Experience	-0.70**	0.01	-0.17	0.05	-0.29	1.14	
	(0.33)	(0.31)	(0.16)	(0.16)	(0.70)	(0.80)	
Constant	7.09***	6.09***	2.74***	2.42***	9.14***	8.62***	
	(0.55)	(0.50)	(0.25)	(0.22)	(0.93)	(0.87)	
Obs.	20,850	20,850	20,850	20,850	20,850	20,850	
R ²	0.41	0.52	0.35	0.44	0.24	0.32	

significance: * 10%, ** 5%, *** 1%

(6) Conclusion

Highlights

- 1 Contribute experimental evidence on role of digital platforms to support youth employment in an under-studied context, covering both formal and informal activity
- 2 For the average TVET graduate in Mozambique, we found no evidence digital platforms yield significantly better outcomes. BUT weak evidence of higher search and lower satisfaction
- 3 Heterogeneous effects seem important: positive effects for women who register on the Biscate platform, esp. those with manual qualifications. Consistent with evidence of higher demand for female-manual workers on the platform
- Digital platforms may help serve labour market 'niches',
 but unlikely to be a general panacea to jobs challenges